Radio interference characteristics of overhead power lines and high–voltage equipment - Part 1: Description of phenomena
Lời nói đầu
TCVN 7379–1 : 2004 hoàn toàn tương đương với tiêu chuẩn CISPR 18–1 : 1982;
TCVN 7379–1 : 2004 do Ban kỹ thuật tiêu chuẩn TCVN/TC/E9 Tương thích điện từ biên soạn, Tổng cục Tiêu chuẩn Đo lường Chất lượng đề nghị, Bộ Khoa học và Công nghệ ban hành.
ĐẶC TÍNH NHIỄU TẦN SỐ RAĐIÔ CỦA ĐƯỜNG DÂY TẢI ĐIỆN TRÊN KHÔNG VÀ THIẾT BỊ ĐIỆN CAO ÁP - PHẦN 1: MÔ TẢ HIỆN TƯỢNG
Radio interference characteristics of overhead power lines and high–voltage equipment - Part 1: Description of phenomena
Tiêu chuẩn này áp dụng cho tạp rađiô từ đường dây tải điện trên không và từ thiết bị điện cao áp có thể gây nhiễu cho việc thu tín hiệu tần số rađiô, ngoại trừ các trường sinh ra do tín hiệu của đường dây điện tải ba.
Dải tần số được đề cập từ 0,15 MHz đến 300 MHz.
Tiêu chuẩn này nhằm cung cấp thông tin về nhiều yếu tố liên quan đến bảo vệ việc thu thanh và thu hình quảng bá khỏi nhiễu do đường dây tải điện cao áp trên không và các thiết bị lắp cùng. Các thông tin đưa ra để trợ giúp khi các biện pháp để tránh hoặc làm giảm tạp tần số rađiô đang được xem xét. Tiêu chuẩn này không đề cập đến nhiễu gây ra do các trường của tín hiệu đường dây điện tải ba.
Thôn tin đề cập chủ yếu đến sự phát sinh và các đặc tính của tạp tần số rađiô do các đường dây tải điện xoay chiều và các thiết bị làm việc ở điện áp 1 kV trở lên, trong dải tần từ 0,15 MHz đến 30 MHz (phát thanh quảng bá điều biên) và từ 30 MHz đến 300 MHz (phát thanh quảng bá điều tần và truyền hình). Các khía cạnh đặc biệt về phóng tia lửa điện do tiếp xúc xấu cũng được tính đến. Một số thông tin về nhiễu do đường dây tải điện một chiều trên không có các điều kiện nhiễu và vầng quang khác biệt so với đường dây tải điện xoay chiều cũng được đề cập. Tiêu chuẩn này không đề cập đến nhiễu do thiết bị góp dòng của hệ thống đầu máy xe điện chạy trên cao.
Qui trình chung để thiết lập các giới hạn và các phương pháp đo của trường tạp tần số rađiô của các đường dây tải điện và các thiết bị được đưa ra cùng với các giá trị điển hình làm ví dụ.
Điều khoản qui định về các giới hạn tập trung ở băng tần thấp và băng tần trung vì chỉ ở các băng tần này mới có đầy đủ các bằng chứng thực tế. Tiêu chuẩn này không đưa ra ví dụ về các giới hạn để bảo vệ việc thu trong băng tần từ 30 MHz đến 300 MHz, vì các phương pháp đo và một số khía cạnh khác của vấn đề trong băng tần này vẫn chưa được giải quyết hoàn toàn. Phép đo tại hiện trường và kinh nghiệm thực tế chỉ ra rằng các mức tạp do đường dây tải điện ở tần số cao hơn 300 MHz thấp đến mức ít có khả năng gây ra nhiễu cho việc thu tín hiệu truyền hình.
Các giá trị giới hạn nêu dưới dạng ví dụ tính toán để đưa ra cấp bảo vệ hợp lý đối với việc thu tín hiệu quảng bá tại biên của vùng dịch vụ được chấp nhận của máy phát thích hợp trong băng tần phát thanh điều biên (AM), ở điều kiện bất lợi nhất thường gặp phải. Các giới hạn này được dùng để cung cấp hướng dẫn ở bước hoạch định đường dây và các tiêu chuẩn dựa vào đó có thể kiểm tra tính năng của đường dây sau xây dựng và trong quá trình sử dụng.
Tiêu chuẩn này đưa ra các khuyến cáo về thiết kế, định tuyến, xây dựng và bảo trì đường dây và thiết bị để giảm thiểu nhiễu và hy vọng rằng tiêu chuẩn này sẽ trợ giúp các dịch vụ rađiô khác trong việc xem xét các vấn đề về nhiễu.
3.1. Tạp rađiô từ đường dây tải điện cao áp trên không, là đường dây có điện áp trên 1 kV, có thể sinh ra trên một băng tần rộng do
a) phóng vầng quang trong không khí tại bề mặt của dây dẫn và phụ kiện đường dây;
b) phóng điện và tia lửa điện tại vùng có ứng suất cao của cái cách điện;
c) phóng tia lửa điện tại các chỗ tiếp xúc bị nới lỏng hoặc tiếp xúc không tốt.
Các nguồn a) và b) thường phân bố dọc theo chiều dài của đường dây, còn nguồn c) thường là cục bộ. Đối với các đường dây vận hành ở 100 kV trở lên, ứng suất điện trong không khí tại bề mặt của dây dẫn và phụ kiện đường dây có thể gây ra phóng vầng quang. Phóng tia lửa điện tại chỗ tiếp xúc xấy hoặc cái cách điện vỡ hoặc nứt có thể làm tăng cục bộ nguồn tạp rađiô. Các thiết bị điện cao áp ở trạm cũng có thể sinh ra tạp rađiô truyền dọc theo đường dây trên không.
3.2. Nếu cường độ của trường tạp rađiô tại anten thu thanh quảng bá và các dịch vụ truyền hình quá lớn thì có thể gây suy giảm âm thanh đầu ra và, trong trường hợp truyền hình, chất lượng hình ảnh cũng bị suy giảm.
3.3. Sự phát sinh tạp rađiô bị tác động bởi điều kiện thời tiết, ví dụ, khi thời tiết ẩm ướt thì có nhiều khả năng xuất hiện vầng quang dây dẫn do các giọt nước đọng trên dây dẫn, trong khi ở điều kiện này, những chỗ tiếp xúc xấu có thể bị nước bắc cầu và, nhờ quá trình này, làm ngừng phát sinh tạp rađiô. Vì vậy, các tiếp điểm bị nới lỏng hoặc tiếp xúc không tốt có nhiều khả năng phóng tia lửa điện trong điều kiện thời tiết khô. Cái cách điện sạch, khô có thể gây nhiễu trong thời tiết tốt, nhưng có nhiều khả năng xảy ra phát tia lửa điện kéo dài trên bề mặt cái cách điện khi cách điện bị bẩn, đặc biệt là trong điều kiện ẩm, sương mù hoặc đóng băng.
3.4. Đối với việc thu các tín hiệu phát thanh và truyền hình không bị nhiễu, điều quan trọng là ở đầu vào máy thu có tỷ số đủ cao giữa mức tín hiệu mong muốn và mức tạp rađiô không mong muốn. Do đó, có thể cảm thấy nhiễu khi cường độ tín hiệu thấp và điều kiện thời tiết có lợi cho việc phát sinh tạp rađiô.
3.5. Khi nghiên cứu tạp rađiô, cần lưu ý là một nguồn hoặc các nguồn ở xa có thể gây ra trường cục bộ vì tạp có thể truyền dọc theo đường dây ở khoảng cách đáng kể.
3.6. Tiêu chuẩn này đề cập đến các nguyên nhân, phép đo và các ảnh hưởng của nhiễu tần số rađiô, các khía cạnh thiết kế liên quan đến nhiễu này, các phương pháp và ví dụ để thiết lập các giới hạn và dự đoán dung sai mức nhiễu của đường dây tải điện cao áp trên không và các thiết bị lắp cùng ảnh hưởng đến việc thu các dịch vụ quảng bá chấp nhận được.
4. Tạp rađiô từ các đường dây tải điện
4.1. Khía cạnh vật lý của tạp rađiô
4.1.1. Cơ chế hình thành trường tạp
Phóng vầng quang trên dây dẫn, cái cách điện hoặc phụ kiện đường dây hoặc phóng tia lửa điện tại các chỗ tiếp xúc xấu có thể là nguồn gây tạp rađiô vì chúng truyền các xung dòng điện vào dây dẫn. Việc truyền này chạy dọc theo dây dẫn theo cả hai hướng tính từ điểm truyền. Các thành phần khác nhau của phổ tần số của các xung này có những ảnh hưởng khác nhau.
Trong dải tần từ 0,15 MHz đến vài megahec, tạp chủ yếu là do ảnh hưởng của việc truyền dọc theo đường dây. Bức xạ điện từ trực tiếp từ bản thân nguồn xung không góp phần đáng kể vào mức tạp. Trong trường hợp này, bước sóng là dài so với khoảng cách các dây dẫn và do đó, đường dây không phải là vật bức xạ hiệu quả. Tuy nhiên, có sự kết hợp từng thành phần phổ điện áp và phổ dòng điện, trường điện và trường từ truyền dọc theo đường dây. Vì việc truyền này suy giảm tương đối ít nên trường tạp được xác định bởi sự kết hợp ảnh hưởng của tất cả các phóng điện trải suốt nhiều kilômét dọc theo đường dây ở cả hai phía của điểm thu. Cần chú ý là trường dẫn hướng chiếm ưu thế ở gần đường dây, trong khi trường bức xạ chiếm ưu thế ở cách xa đường dây. Sự chuyển đổi là không đột ngột và hiện tượng chưa được biết rõ. ảnh hưởng của chuyển đổi này không quan trọng ở tần số thấp nhưng đáng kể ở tần số trung gian.
Tuy nhiên, đối với thành phần phổ trên 30 MHz có bước sóng gần bằng hoặc nhỏ hơn khoảng cách các dây dẫn của đường dây, vì không có sự truyền dọc theo đường dây nên ảnh hưởng của tạp có thể giải thích chủ yếu bằng lý thuyết bức xạ anten áp dụng cho nguồn tạp.
Tuy nhiên, cần phải đánh giá rằng tần số 30 MHz không tạo ra ranh giới rõ ràng giữa hai cơ chế tạo trường tạp khác nhau.
4.1.1.1. Lan truyền theo chiều dọc
Trong trường hợp một đường dây duy nhất lắp bên trên mặt đất, sóng điện áp U(t) và sóng dòng điện I(t) đồng thời lan truyền.
Với tần số cho trước, hai đại lượng này có quan hệ bởi biểu thức U(w) = ZI(w) trong đó Z là trở kháng sóng của đường dây và cũng là hàm số của w.
Trong quá trình truyền, các sóng suy giảm theo hệ số chung a, trong đó:
Ux = Uoe-ax
Ix = Ioe-ax
Uo và Io là biên độ tại nguồn và x là khoảng cách truyền dọc theo đường dây.
Trong trường hợp đường dây nhiều pha, kinh nghiệm cho thấy rằng, bất kỳ hệ thống điện áp hoặc dòng điện nào cũng bị méo khi truyền, nghĩa là, độ suy giảm thay đổi theo khoảng cách truyền và khác nhau giữa các dây dân. Lý thuyết truyền và các phép đo thực tế trên đường dây tải điện cho thấy điện áp tạp trên dây dẫn pha có thể xem như được hình thành từ nhiều “phương thức”, mỗi phương thức chứa các thành phần trên từng dây dẫn. Có phương thức truyền giữa tất cả các dây dẫn song song và đất. Lại có các phương thức khác truyền giữa các dây dẫn. Mỗi phương thức lại có độ suy giảm truyền khác nhau. Lý thuyết hoàn chỉnh về phương thức truyền khá phức tạp và liên quan đến các phương trình ma trận không thuộc phạm vi của tiêu chuẩn này. Tài liệu tham khảo ở đây là CIGRÉ (Hội thảo quốc tế về hệ thống điện cao áp) và các ấn bản khác. Điều quan trọng cần lưu ý là độ suy giảm của phương thức truyền dây dẫn – đất tương đối cao, nghĩa là từ 2 dB/km đến 4 dB/km, trong khi độ suy giảm của các phương thức truyền dây dẫn – dây dẫn khác chỉ bằng một phần nhỏ của 1 dB/km ở tần số 0,5 MHz.
4.1.1.2 Trường điện từ
Điện áp và dòng điện truyền dọc theo đường dây tạo ra một trường điện từ liên kết truyền gần đường dây.
Điều cần lưu ý ở đây là trong không gian tự do, trường điện và trường từ liên kết với sóng điện từ bức xạ, chúng vuông góc với nhau và vuông góc với phương truyền sóng. Tỷ số biên độ của chúng là một hằng số:
và được gọi là trở kháng nội hay trở kháng của không gian tự do.
Mặt khác, các trường gần đường dây liên quan đến điện áp và dòng điện tần số rađiô truyền dọc theo đường dây, và tỷ số của chúng phụ thuộc vào trở kháng sóng của đường dây ở các phương thức khác nhau. Hơn nữa, hướng của trường điện và trường từ này khác biệt so với hướng của các trường bức xạ trong không gian tự do vì chúng chủ yếu được xác định từ bố trí hình học của các dây dẫn đường dây. Vấn đề còn phức tạp hơn bởi thực tế là điều kiện của đất có ảnh hưởng khác nhau do hiệu ứng ảnh gương trong đất của trường điện và trường từ.
Điện trường E(y) ở mức mặt đất của một dây duy nhất, là thành phần thẳng đứng của trường điện tổng, được cho bởi công thức gần đúng dựa trên giả thiết đơn giản:
trong đó I là dòng điện truyền trong dây dẫn, tính bằng ampe, h là chiều cao của dây dẫn, tính bằng mét, và y là khoảng cách theo chiều ngang, tính bằng mét, tính từ điểm ngay dưới dây dẫn đến điểm đo.
Ngoài ra, đối với một đường dây duy nhất có chiều dài vô tận, vùng cảm ứng, hoặc trường gần, có cùng tỷ số giữa trường điện và trường từ là trường xa tính từ máy phát thanh, nghĩa là 377 W và giá trị này gần đúng cho mọi giá trị độ dẫn của đất.
Trong trường hợp đường dây nhiều pha, trường điện là tổng véctơ của các trường riêng của từng dây dẫn pha. Một nghiên cứu toàn diện hơn, cùng với các phương pháp đánh giá trường điện từ thực tế, được đề cập trong TCVN 7379–2 (CISPR 18–2) Đặc tính nhiễu tần số rađiô của đường dây tải điện trên không và thiết bị điện cao áp – Phần 2: Phương pháp đo và qui trình xác định giới hạn. Công thức nêu ở trên là một cách chuyển đổi đơn giản chính xác với D = 20 m và f = 0,5 MHz, trong đó D là khoảng cách, tính bằng mét, giữa anten của bộ đo và dây dẫn gần nhất của đường dây và f là tần số đo. Đối với dải khoảng cách D và dải tần số f rộng hơn, có thể cần tính đến mọi tham số ảnh hưởng đến công thức.
4.1.1.3 Hiệu ứng tổng hợp
Trong trường hợp nguồn tạp phân bố không đồng nhất, trường do một đơn vị chiều dài của dây dẫn pha sinh ra có thể được biểu diễn ở điểm bất kỳ dọc đường dây như một hàm số của khoảng cách theo chiều dài x và khoảng cách theo chiều ngang y, nghĩa là E(y, x). Ở khoảng cách theo chiều ngang y cho trước,
E(y, x) = Eo(y)e-ax
Các xung ngẫu nhiên trên một đường dây dài có nguồn tạp phân bố không đồng nhất kết hợp với nhau tạo nên trường tổng. Hiện vẫn chưa có sự thống nhất về cách kết hợp giữa các xung không giống nhau. Một số nhà nghiên cứu cho rằng chúng kết hợp theo dạng bậc hai:
hoặc
Các nhà nghiên cứu khác cho rằng, nếu sử dụng bộ tách sóng tựa đỉnh để đo cường độ trường thì các xung riêng rẽ không cộng lại và một số người khác đã thu được kết quả giữa hai giá trị giới hạn. Sự khác nhau này chỉ quan trọng trong phương pháp dự đoán phân tích, các kết quả thu được bằng các phương pháp khác nhau chỉ chênh lệch khoảng 1 dB hoặc 2 dB.
Trong trường hợp đường dây nhiều pha, việc tính toán tuân theo cùng một nguyên tắc nhưng phức tạp do có nhiều phương thức, mỗi phương thức có hệ số suy giảm khác nhau. Nghiên cứu chi tiết hơn cùng với các ví dụ tính toán được nêu trong điều 6.
4.1.2 Xác định tạp
Giá trị tạp tức thời thay đổi liên tục và ngẫu nhiên, nhưng mức công suất trung bình của nó trong một khoảng thời gian đủ dài, ví dụ như 1 s, cho một đại lượng ngẫu nhiên ổn định có thể đo được. Một đại lượng khác thích hợp cho phép đo là giá trị đỉnh hoặc giá trị đỉnh có trọng số nào đó của mức tạp.
Máy đo tạp chính là vôn mét nhạy, có độ chọn lọc điều hưởng được với băng thông qui định. Khi nối với anten roi hoặc anten vòng thích hợp đã được hiệu chỉnh đúng, vôn mét có thể đo được thành phần điện hoặc thành phần từ của trường tạp.
Tùy thuộc vào thiết kế kế của thiết bị đo, mức tạp có thể được đo theo giá trị hiệu dụng, giá trị đỉnh hoặc giá trị tựa đỉnh. Giá trị hiệu dụng xác định tạp về mặt năng lượng. Nhiều loại tạp do các thiết bị điện, cũng như do vầng quang của đường dây tải điện gây ra, gồm một chuỗi các xung ngắn có tần số lặp gần như ổn định. Trong các trường hợp như vậy, ảnh hưởng khó chịu của tạp có thể được thể hiện bằng loại vôn mét tựa đỉnh tốt hơn là vôn mét hiệu dụng. Giá trị tựa đỉnh thu được từ mạch điện gồm một điôt và một tụ điện có hằng số thời gian nạp tương đối ngắn và hằng số thời gian phóng tương đối dài. Điện áp trên các tụ điện dao động quanh một giá trị thấp hơn giá trị đỉnh một chút và phụ thuộc vào tốc độ lặp, nghĩa là đặc trưng trọng số nằm trong đáp tuyến. Nguyên tắc này được tuân thủ trong thiết bị đo CISPR, chi tiết được nêu trong tiêu chuẩn TCVN 6989 (CISPR 16). Do đó, mức tạp được xác định bởi giá trị đo được nhờ thiết bị đo này, đơn vị tính là micrôvôn hoặc micrôvôn trên mét. Bằng cách sử dụng tỷ số trường điện trên trường từ , E/H = 377, các giá trị đo được biểu diễn theo qui ước bằng micrôvôn trên mét ngay cả đối với các thiết bị sử dụng anten vòng đáp ứng với trường từ.
4.1.3. Ảnh hưởng của các tham số bên ngoài
Để xác định građien bắt đầu vầng quang gc của dây dẫn hình trụ có bề mặt nhẵn, công thức Peek thường được sử dụng:
Đối với điện áp xoay chiều, gc là giá trị đỉnh của građien, r là bán kính của dây dẫn, tính bằng centimét, là mật độ không khí tương đối (d = 1 đối với p = 1 013 mbar và t = 25 0C).
Tuy nhiên, điều kiện thực tế trên đường dây trên không không phù hợp với các giả thiết lý tưởng này. Các sợi dây dẫn bện, sự không hoàn hảo và không đồng đều của bề mặt làm tăng cục bộ trường điện và do đó điện áp khởi đầu vầng quang thấp hơn so với giá trị thu được từ công thức trên. Điều này thường có nghĩa là građien tới hạn để bắt đầu tạp rađiô, trong điều kiện thời tiết xấu, bằng khoảng một nửa giá trị tính theo công thức Peek.
Điều kiện khí quyển cũng đóng một vai trò quan trọng. Trong điều kiện mưa, sương mù, tuyết hoặc sương đọng, các giọt nước đọng trên bề mặt dây dẫn và ở điều kiện nhiệt độ thấp có thể hình thành băng. Việc này làm giảm thêm điện áp khởi đầu vầng quang và làm tăng mức tạp như đề cập trong điều 5 và 6.
Về mặt tiếp xúc xấu và sự phát sinh tia lửa điện nhỏ, ảnh hưởng của mưa và độ ẩm làm bắc cầu các khe hơn liên quan bằng nước hoặc lớp ẩm, do đó làm giảm mức của loại tạp này.
Vì thế, mưa và độ ẩm tác động đến tạp do vầng quang trên dây dẫn theo cách ngược với cách tác động do tiếp xúc xấu. Do đó, khi thấy có nhiễu trong lúc mưa hoặc sương mù, có thể kết luận nhiễu là do vầng quang gây ra. Mặt khác, khi thấy có nhiễu trong giai đoạn thời tiết tốt và nhiễu bị mất hoặc giảm đi khi có mưa hoặc sương mù thì đó là do tiếp xúc xấu.
4.2. Đặc điểm chính của trường tạp do vầng quang dây dẫn gây ra
Để hợp lý hóa phép đo tạp rađiô từ một đường dây truyền tải và để đơn giản hóa việc so sánh giữa các đường dây khác nhau, cần phải tiêu chuẩn hóa các điều kiện mà phép đo được tiến hành.
Các đặc điểm chính của trường tạp là phổ tần số, biên dạng theo chiều ngang và thay đổi thống kê của tạp theo điều kiện thời tiết. Giả thiết gần đúng đầu tiên là đặc điểm này độc lập với nhau.
4.2.1. Phổ
Phổ là sự biến thiên của tạp rađiô đo được tại một điểm cho trước trong vùng lân cận đường dây, như một hàm của tần số đo. Có hai hiện tượng liên quan:
a) Xung dòng điện
Các xung dòng điện sinh ra trong dây dẫn do phóng điện có một phổ cụ thể phụ thuộc vào hình dạng xung. Đối với loại phóng điện này, mức tạp đo được giảm theo tần số. Trong dải tần quảng bá, ở đó phóng điện dương có ảnh hưởng trội hơn, phổ độc lập với đường kính dây dẫn.
b) Độ suy giảm
Độ suy giảm của tạp truyền dọc theo đường dây tăng theo tần số. Hiệu ứng này làm thay đổi phổ do giảm mức tạp còn nhiều hơn khi tần số tăng.
Phổ đo được thường không đồng đều vì sóng đứng do các gián đoạn như cột góc hoặc cột cuối hoặc các thay đổi mức nền đột ngột gây ra. Ngoài ra, sự phát sinh tạp có thể thay đổi trong khi thực hiện phép đo.
“Phổ tiêu chuẩn” được sử dụng để hỗ trợ cho các tình toán dự đoán. Kinh nghiệm cho thấy tất cả các phổ có thể chia thành hai nhóm, một nhóm dùng cho cấu hình dây dẫn dàn ngang, nhóm còn lại dùng cho cấu hình mạch kép và cấu hình dây dẫn tam giác hoặc thẳng đứng. Sự khác nhau giữa hai nhóm này xuất phát từ hiện tượng đề cập ở điểm b) trên đây, việc truyền có khác biệt nhỏ tuỳ theo loại đường dây. Tuy nhiên, vì sự khác biệt không quan trọng so với độ chính xác của các tính toán này, nên chỉ một phổ tiêu chuẩn được cho theo giá trị tương đối, điểm chuẩn được lấy ở 0,5 MHz.
Công thức dưới đây đại diện tiêu biểu cho phổ này:
ΔE(dB) = 5 [1–2 (lg10f)2]
trong đó ΔE(dB) là biến thiên của mức tạp rađiô từ tần số chuẩn 0,5 MHz và f là tần số, tính bằng mêgahéc, trong dải từ 0,15 MHz đến 4 MHz.
Cần lưu ý là các nhà nghiên cứu khác đã đưa ra các công thức khác cũng cho các kết quả tương tự. ở tần số cao hơn thì dự đoán phổ tạp khó hơn.
4.2.2. Biên dạng
Biến thiên của trường tạp là hàm số của khoảng cách tính từ đường dây được đặc trưng bởi mức giảm phụ thuộc vào tần số. Các phép đo được thực hiện dọc theo đường vuông góc với khoảng vượt giữa, càng gần với khoảng vượt trung bình của đường dây đang xem xét càng tốt. Phải tránh ở gần các trạm hoặc các mối nối liên kết, các góc ngoặt, các đường dây liền kề và thay đổi lớn về độ cao của địa hình.
Biên dạng được xác định ở độ cao 2 m phía trên mặt đất tính từ điểm ngay dưới dây dẫn nằm ngoài cùng trên chiều dài không quá 200 m. Ngoài khoảng cách này, mức tạp của đường dây nói chung là không đáng kể. Tần số chuẩn đối với các phép đo CISPR là 0,5 MHz.
Biên dạng đo được thường không đồng đều do sự dao động liên tục của tạp rađiô trong suốt một loạt các phép đo và do sự không đều như cột góc hoặc cột cuối và thay đổi của địa hình.
Nhiều phép đo được tiến hành trên khoảng năm mươi đường dây khác nahu đã đưa ra hiểu biết thực nghiệm hữu ích về các biên dạng này, chúng cũng đã được khẳng định bằng các tính toán lý thuyết.
Phân tích chính xác cho phép vẽ các biên dạng như một hàm của các cấp điện áp đường dây và cấu hình đến khoảng cách khoảng 100 m, ngoài khoảng cách này, mức tạp thường quá thấp để thực hiện được các phép đo tin cậy.
Trong vùng lân cận của đường dây tải điện có hai trường tạp, trường trực tiếp hay trường dẫn hướng và trường bức xạ. Trường bức xạ là kết quả của sự không đều trên đường dây như độ võng đường dây, các thay đổi về hướng của đường dây và độ dẫn của đất không tốt. Trường trực tiếp giảm theo bình phương khoảng cách, trường bức xạ giảm tuyến tính theo khoảng cách. Trường trực tiếp chiếm ưu thế ở gần đường dây, trong khi trường bức xạ chiếm ưu thế ở khoảng cách lớn hơn. Dựa trên một số khái nhiệm về anten, hai trường có thể bằng nhau ở khoảng cách xấp xỉ 300/2pf mét, trong đó f tính bằng megahéc. Trong thực tế, độ suy giảm theo chiều ngang ở gần đường dây giảm chậm hơn bình phương khoảng cách. Hệ số suy giảm k với các tần số từ 0,5 MHz đến 1,6 MHz, ví dụ, là 1,65 (xem phụ lục C). Độ suy giảm theo chiều ngang ở gần đường dây có thể được mô tả bằng:
E = Eo + 20k lg Do/D
trong đó:
E là mức tạp, tính bằng đềxiben (1 mV/m) ở khoảng cách D
k là hệ số suy giảm
Eo là mức tạp, tính bằng đềxiben (1 mV/m) ở khoảng cách chuẩn Do
Ở cách xa đường dây, hệ số suy giảm giảm dần cho đến khi đạt giá trị là một đơn vị. Một số nhà nghiên cứu xem như hai trường bằng nhau ở khoảng 300/2pf mét như nêu ở trên. Ví dụ, phương trình ở cuối 2.3.5.1 của TCVN 7379–2 (CISPR 18–2), thể hiện biên dạng trong băng tần từ 0,4 MHz đến 1,6 MHz, giả thiết khoảng cách tính từ đường dây là 100 m.
Biên dạng tiêu chuẩn được thể hiện theo khoảng cách bằng thang logarit, lấy mốc là khoảng cách thẳng đến dây dẫn là 20 m. Cách biểu diễn này thể hiện qui luật tự nhiên của trường tạp suy giảm như một hàm của khoảng cách tính từ dây dẫn gần nhất. Các biên dạng cũng có thể được biểu diễn như một hàm số của khoảng cách theo chiều ngang. Cách biểu diễn này thích hợp cho việc dự đoán độ rộng của hành lang chịu nhiễu.
4.2.3 Phân bố thống kê
Nghiên cứu có hệ thống về các dao động mức tạp rađiô của một đường dây đòi hỏi phải ghi liên tục cường độ trường bên dưới đường dây này trong ít nhất một năm, ở khoảng cách cố định tính từ đường dây và với tần số đo cố định. Nhiều nhà nghiên cứu ở nhiều nước đã tiến hành các phép đo này với kết quả là có các dữ liệu tương đối tin cậy về sự thay đổi mức tạp rađiô theo năm hoặc theo mùa. Các kết quả này thường được biểu diễn theo phương pháp phân tích thống kê, nghĩa là dưới dạng biểu đồ hoặc các phân bố luỹ tích. Phân bố luỹ tích biểu diễn phần trăm thời gian trong đó mức tạp rađiô thấp hơn giá trị đã cho.
Nguyên nhân quan trọng nhất của sự dao động mức tạp rađiô ghi được là:
– bản chất ngẫu nhiên của hiện tượng;
– sự thay đổi của điều kiện khí tượng, cả tại điểm đo lẫn dọc theo vài chục kilômét đường dây có đóng góp vào nhiễu cục bộ;
– thay đổi trạng thái bề mặt của dây dẫn, không chỉ do tác động của điều kiện thời tiết như mưa và sương mà còn do lắng đọng bụi, côn trùng và các phần tử khác.
Rất khó để đo một cách hệ thống các nguyên nhân này. Mặc dù các thay đổi của điện áp đặt của đường dây tạo ra các dao động trong mức tạp rađiô, nhưng nguyên nhân này có thể đo được.
Sự phân bố của mức tạp cũng phụ thuộc vào loại khí hậu; khí hậu rất ẩm ướt, mưa nhiều, hoặc có nhiều tuyết hoặc sương sẽ làm tăng phần trăm của các mức cao, trong khi khí hậu rất khô sẽ làm giảm phần trăm đi.
Các đường cong trên các hình từ 3 đến 6, ở khí hậu ôn đới thể hiện các ví dụ về khảo sát phân bố trong mọi thời tiết, cùng với một phân bố trong thời tiết khô và một phân bố trong thời tiết mưa to trung bình. Có thể thấy rằng, đường cong tổng thể là sự kết hợp nhiều hoặc ít hơn hai hoặc ba phân bố Gauxơ.
Trong phân bố ở mọi thời tiết, thông thường xác định được một số mức đặc tính:
– Mức 99 % là mức thực tế cao nhất có thể có của đường dây, tại điểm cho trước.
– Mức mưa to trung bình là mức ổn định nhất và có thể tái tạo, mưa được coi là to khi đạt 0,6 mm một giờ hoặc cao hơn. Vì lý do này, mức mưa to trung bình thường được chọn là mức chuẩn để tính tạp rađiô. Trên thực tế, mức mưa to trung bình là mức 95 % và thấp hơn mức 99 % khoảng 5 dB.
– Mức thời tiết tốt trung bình, ứng với điều kiện dây dẫn khô. Điều này quan trọng đối với thực tế, nhưng do độ phân tán lớn hơn nên để thu được các kết quả tin cậy thì cần số lượng lớn các phép đo trong suốt một năm. Rất may là có thể dễ dàng thực hiện các phép đo trong điều kiện thời tiết tốt trung bình hơn là trong điều kiện mưa to trung bình.
– Mức 50 %, đọc trên đường cong luỹ tích ở mọi thời tiết. Không được nhầm mức 50 % này với mức thời tiết tốt trung bình xác định ở trên, vì nó xuất hiện không chỉ ở điều kiện thời tiết khô mà còn xuất hiện trong toàn bộ dải điều kiện khí hậu phổ biến trong các ghi chép dài hạn. Ngoài ra, mức thời tiết tốt trung bình và mức 50 % còn phụ thuộc chủ yếu vào trạng thái bề mặt của dây dẫn; các mức này có thể thay đổi trên dải lớn hơn 10 dB tuỳ theo dây dẫn có bị bẩn, bị bôi mỡ, v.v… hay không. Một số chuyên gia cho rằng mức 50 % sẽ không thay đổi quá 10 dB trong một khoảng thời gian tương đối dài, nghĩa là một tháng hoặc một năm, cho dù các số đọc riêng rẽ có thể biến thiên hơn 10 dB.
– Mức 80 %, đọc trên đường cong phân bố mọi thời tiết, được chọn làm giá trị đặc trưng, được dùng làm cơ sở về giới hạn. Mức 80 % này nằm trong khoảng giữa mức thời tiết tốt và mức mưa to trung bình, ít phải chịu độ không ổn định hơn so với mức 50 % và do đó, được coi như là “mức đặc trưng”. Nghiên cứu nhiều đường cong luỹ tích cho thấy chênh lệch giữa mức 95 % và mức 80 % nằm giữa 5 dB và 12 dB. Như đề cập trong 4.2.2, cần lưu ý là các phép đo tin cậy ở ngoài khoảng cách từ 100 m đến 200 m thường không thực hiện được. Các hướng dẫn chung ở trên được minh họa trên các hình từ 3 đến 6, liên quan đến đường dây từ 400 kV đến 750 kV và có hiệu lực đối với các đường dây mà nguồn tạp chiếm ưu thế là vầng quang trên dây dẫn.
5. Ảnh hưởng của vầng quang trên dây dẫn
5.1. Khía cạnh vật lý của vầng quang trên dây dẫn
5.1.1 Qui định chung
Sự phát sinh tạp rađiô do vầng quang trên dây dẫn do phóng điện, xuất hiện tại hoặc gần bề mặt dây dẫn, thường gọi là vầng quang. Vầng quang được định nghĩa là “phóng điện có ánh sáng nhẹ sinh ra ở gần dây dẫn và giới hạn ở vùng bao quanh dây dẫn, tại đó trường điện vượt quá một giá trị nhất định”. Nhiều khía cạnh của phóng vầng quang trên đường dây còn chưa được biết và chưa xác định được; tuy nhiên, quá trình vật lý cơ bản là quá trình nhân điện tử hoặc hình thành thác điện tử. Građien về điện ở vùng lân cận của dây dẫn là građien lớn nhất và, nếu građien này hoặc ứng suất điện đủ cao, các điện tử trong không khí bao quanh dây dẫn sẽ ion hóa các phân tử khí và các điện tử được tạo ra bởi quá trình ion hóa này sẽ gây nên hiện tượng thác. Nếu trên građien này hình thành thêm một điện tử nhờ quá trình nào đó của thác điện tử đầu tiên thì một thác mới sẽ hình thành do quá trình thứ phát này và sinh ra phóng vầng quang.
Trong trường hợp dây dẫn của đường truyền dẫn, quá trình thứ phát quan trọng là sự bứt ra của các điện tử từ phần tử khí do tia cực tím năng lượng cao (quang ion hóa) sinh ra ở thác đầu tiên. Nhiều nghiên cứu cho thấy mức tạp rađiô sinh ra khi dây dẫn dương lớn hơn nhiều so với mức tạp khi dây dẫn âm. Trong trường hợp đường dây tải điện trên không có cực tính dương, catốt ở cách xa đến nỗi mà phát xạ catốt không đáng kể và quá trình thứ phát tồn tại trong trường hợp này là sự quang ion hóa chất khí.
Khi dải vầng quang hình thành tại một điểm trên dây dẫn sẽ tồn tại hai trường xung. Gần dải hình thành trường cục bộ còn dọc đường dây là trường trực tiếp do các xung di chuyển xuống dưới đường dây. Đối với thiết kế của đường dây siêu cao áp, chỉ có trường trực tiếp được coi là đáng kể và các phép đo hữu ích nhất được thực hiện tại khoảng cách nhất định tính từ các vị trí của dải vầng quang trên dây dẫn của đường dây.
Nghiên cứu chi tiết hơn về các khía cạnh lý thuyết của vầng quang trên dây dẫn xem [1, 2][*].
5.1.2 Các yếu tố gây phát sinh vầng quang
Khả năng xuất hiện phóng vầng quang tại bề mặt của dây dẫn phụ thuộc vào nhiều yếu tố, đó là:
a) Građien điện áp bề mặt dây dẫn về mặt lý thuyết phụ thuộc vào:
1) điện áp của hệ thống;
2) đường kính dây dẫn;
3) khoảng cách của dây dẫn so với đất và các dây pha khác;
4) số lượng dây dẫn trên một pha hoặc trong chùm dây;
b) Đường kính dây dẫn.
c) Điều kiện bề mặt dây dẫn.
d) Điều kiện khí quyển và thời tiết.
Từng yếu tố trên sẽ được xem xét riêng.
5.1.2.1 Građien điện áp bề mặt dây dẫn
Một trong các đại lượng quan trọng nhất trong việc xác định mức tạp rađiô của đường dây, đặc biệt khi vầng quang trên dây dẫn chiếm ưu thế, là cường độ của trường điện trong không khí tại bề mặt của dây dẫn tức là građien điện áp bề mặt.
Do vầng quang trên dây dẫn phụ thuộc chặt chẽ vào giá trị của građien điện áp nên cần phải sử dụng phương pháp tính toán građien với độ chính xác khoảng 1 %.
Vì dây dẫn thường là loại bện nên građien điện áp bề mặt biến thiên trong khoảng giá trị trung bình quanh chu vi của dây dẫn. Tuy nhiên, thường tính građien bề mặt đối với dây dẫn trơn nhẵn có cùng đường kính tổng, ngay cả khi đưa vào hệ số bện thực nghiệm.
Công thức tính građien điện áp tại bề mặt của dây dẫn được cho trong phụ lục A đối với trường hợp đơn giản là đường dây một pha có đường về là đất hoặc đường dây một chiều đơn cực đến trường hợp phức tạp hơn là đường dây ba pha nhiều mạch và đường dây một chiều hai cực. Thông thường, các tính toán cần đến phương trình ma trận và các chương trình máy tính được sử dụng cho cả đường dây một pha và đường dây ba pha nhiều mạch và các đường dây một chiều cao áp phức tạp hơn.
5.1.2.2 Đường kính dây dẫn
Mức tạp rađiô tăng khi đường kính dây dẫn tăng ngay cả khi građien bề mặt của dây dẫn không thay đổi. Hiện tượng này là do sự suy giảm của trường điện ở bề mặt của dây dẫn giảm đi khi đường kính của dây dẫn tăng lên. Do đó, trường điện quanh dây dẫn lớn có dải vầng quang lâu hơn so với trường điện quanh các dây dẫn nhỏ.
5.1.2.3 Điều kiện bề mặt của dây dẫn
Loại dây dẫn, ví dụ như loại bện tròn hoặc bện chia đoạn, và điều kiện bề mặt của dây dẫn, nghĩa là độ trơn nhẵn hoặc độ nhám, có hay không có nhiễm bẩn, nước nhỏ giọt, bông tuyết, v.v… có ảnh hưởng lớn đến sự phát sinh vầng quang. Dây dẫn của đường dây truyền dẫn khi mới căng thường có sự hoạt động của vầng quang cao hơn do độ không đều của bề mặt như các gờ nhôm, phân chim, rác, cát, bùn hoặc các chất lắng đọng bất kỳ khác gây nên vầng quang ngay cả ở thời tiết tốt. Tuy nhiên, sau khi đường dây được cấp điện, vầng quang sẽ mất và mức tạp sẽ giảm theo thời gian. Thường có hai khoảng thời gian liên quan; khoảng thời gian thứ nhất là vài phút đầu tiên sau khi dây dẫn được cấp điện và sự hoạt động của vầng quang làm cháy rác và các phần tử khác tập trung trên dây dẫn từ trước khi cấp điện. Khoảng thời gian dài hơn cần thiết để làm đen toàn bộ chiều dài dây dẫn, làm cho dây dẫn thay đổi màu sắc, hình dạng, đồng thời làm mất bề mặt dầu của dây dẫn mới.
Bằng chứng cho thấy, khi dây dẫn cũ đi, mức tạp rađiô sẽ giảm, ngay cả trong trời mưa. Bề mặt của dây dẫn mới không thấm nước, do lớp dầu trên bề mặt dây dẫn trong quá trình chế tạo, và các giọt nước hình thành trên bề mặt dầu này. Khi dây dẫn cũ, bề mặt của nó có thể thấm nước do đó bề mặt dây dẫn hút các giọt nước vào sợi bện.
5.1.2.4 Điều kiện khí quyển và thời tiết
Áp suất khí quyển giảm hoặc nhiệt độ môi trường tăng, hoặc cả hai, có thể làm giảm mật độ không khí gây giảm cường độ đánh thủng của không khí và do đó, làm tăng khả năng phóng vầng quang trên dây dẫn. Thông thường, yếu tố áp suất khí quyển chỉ kể đến ở độ cao trên 1000 m so với mực nước biển. ở những khu vực có mưa, sương mù, tuyết phủ hoặc nhiệt độ hạ thấp có thể dẫn đến việc hình thành băng hoặc đọng nước trên dây dẫn, phóng vầng quang có nhiều khả năng xảy ra do các điều kiện này. Mưa và tuyết là nguyên nhân gây vầng quang cao nhất tại bề mặt của dây dẫn và có thể làm tăng mức tạp rađiô lớn hơn 20 dB so với mức tạp trên chính đường dây đó trong điều kiện khô. Các giọt nước đọng hoặc tuyết tích tụ trên bề mặt dây dẫn khi đang có bão làm thay đổi đáng kể trường điện, tạo ra một lượng lớn các nguồn gây vầng quang. Phóng điện cũng có thể xảy ra khi tuyết hoặc nước mưa rơi qua dây dẫn và bắt đầu một phóng điện từ dây dẫn đến phần tử đó.
5.2. Phương pháp nghiên cứu vầng quang bằng lồng và đường dây thử nghiệm
Hai phương pháp cơ bản đã được sử dụng để nghiên cứu hiện tượng vầng quang từ đường dây truyền dẫn. Đó là lồng thử nghiệm và đường dây thử nghiệm [9, 21, 31].
5.2.1 Lồng thử nghiệm
Lồng thử nghiệm được nhiều người thử nghiệm sử dụng để xác định nhanh hàm kích thích của dây dẫn hoặc chùm dây phân pha [4 đến 6]. Hàm kích thích có quan hệ với dòng điện trong chùm dây như sau:
trong đó I là dòng điện cao tần được truyền vào dây dẫn hoặc chùm dây, tính bằng A/m1/2, C là điện o
Ý kiến bạn đọc
Nhấp vào nút tại mỗi ô tìm kiếm.
Màn hình hiện lên như thế này thì bạn bắt đầu nói, hệ thống giới hạn tối đa 10 giây.
Bạn cũng có thể dừng bất kỳ lúc nào để gửi kết quả tìm kiếm ngay bằng cách nhấp vào nút micro đang xoay bên dưới
Để tăng độ chính xác bạn hãy nói không quá nhanh, rõ ràng.